According to the recent “International Energy Outlook 2011” report, only 15% of the energy produced globally is expected to come from renewable energy by 2035, including sources such as hydroelectric power, wind, and solar energy. This forecast echoes what the energy industry has known for some time – worldwide energy production will still rely heavily on fossil fuels.

Oil and gas are critical pieces of the world’s energy mix, and governments worldwide are putting increased pressure on companies within the sector to reduce the amount of emissions created during the production process.

In the U.S., for example, the Environmental Protection Agency is set to issue tighter emissions legislation over the course of the next year. The cost to comply with these new standards, in addition to other international emissions rules, is increasing the interest from oil and gas companies to explore new and effective clean technology processes that can viably reduce carbon emissions.

Carbon Capture Today

One meet-in-the-middle technique currently being researched and tested is carbon capture. Despite almost $3.4 billion in Department of Energy financial backing, the U.S. had the largest number of projects cancelled or put on hold in the last year, according to the Global CCS Institute.

Eight projects, including ones funded by companies such as Shell and BP, have been delayed or cancelled. The reasons vary from lack of funding and/or going over budget to lack of governmental policy and public support.

Despite this, there are promising projects currently in the works. Shell recently received funding from the government of Alberta, Canada, to begin construction on its Quest Project, a CCS plant near the Alberta oil sands.

Chevron’s Gorgon Project is the only project in Australia currently in the execution stage. These projects have the potential to reduce the negative impact on the environment and allow for facilities to comply with government emissions mandates.

Most of the current projects use a method of CCS known as injection, which is not without its challenges. Though this is the primary method of CCS, it is also the most controversial.

In an injection project, the captured carbon is injected into the ground for permanent storage, often into saline formations or coal seams that can’t be mined.

It also has been used for EOR in declining oil fields. Injection is an expensive process, usually costing between $0.50 and $8 per ton of carbon injected, plus additional costs for monitoring. Injecting