This year has been a busy one for oil and gas exploration. In addition to some truly mind-boggling discoveries (see shaded box), oil and service companies continued to push the limits of hardware and software technology to solve tough physics problems inherent in “looking” into solid material. Here is a snapshot of some of the major exploration technology advances in 2012.


Schlumberger unveiled the IsoMetrix marine isometric seismic technology and IsoMetrix family of marine seismic products in June, which output isometrically sampled point-receiver data in crossline and inline directions, capturing returning wavefield in 3-D.

According to the company, the new acquisition technology was developed through a 10-year research and engineering program to provide the most accurate images of the subsurface ever recorded. The IsoMetrix system uses calibrated, multisensory micro-electromechanical sensor technology with sensors measuring both acoustic pressure and vertical and crossline acceleration throughout the frequency range. It also facilitates high-resolution near-surface characterization, well integrity planning, and 4-D repeatability, and measurements are provided as customer deliverables.

WesternGeco researchers announced the first commercial job using simultaneous sources in a marine survey. Conducted by WesternGeco for Apache and its partners offshore Australia, the approach was characterized as “a complete revolution in acquisition technology.”

“With every additional source you put out, you increase the productivity of the seismic crew in a linear fashion,” said Craig Beasley, chief geophysicist for WesternGeco and a Schlumberger senior fellow. “If you shoot two sources, you collect twice as much data.”

Conventional versus IsoMetrix

Conventional (top) versus IsoMetrix (bottom) data are exhibited in a North Sea time slice. ( Image courtesy of Schlumberger )

Apache first started considering marine simultaneous sources in 2010 while doing tests at the Forties field in the North Sea. The company acquired a test to understand the concept and to see if it was feasible. Those tests gave the company confidence to try the acquisition methodology in a commercial setting.

The survey was done on a single vessel usually configured with flip-flop sources. “It’s not what we would have predicted would be our first commercial job,” Beasley said. “But it’s pleasing to see the technology demonstrated in that challenging environment, because it opens the door for simultaneous sources in virtually any marine acquisition.”

CGGVeritas designed StagSeis to reduce E&P risk by providing illumination for the best seismic images in the most challenging areas where conventional wide-azimuth acquisition fails to image targets below complex overburdens. It employs